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THE TRANSVERSE OSCILLATION OF COAXIAL MULTIPLE BEAMS 
PROPAGATING ALONG A MAGNETIC FIELD IN A VACUUM TUBE 

H.  C.  CHEN 
NAVAL  SURFACE WEAPONS CENTER 

WHITE OAK,  SILVER  SPRING, MARYLAND    20910 

A fluid-Maxwell  theory has been derived to study a system of multi-beams 

propagating parallel to an applied axial magnetic field in an evacuated 

conducting drift tube.    The stability analysis is performed for a rigid-rotor 

and cold laminar flow equilibria.    It is assumed that the particle beams are 

tenuous and the guiding field is very strong.    As a result, the perturbation 

theory is derived under the condition that the plasma frequency is much 

smaller than the cyclotron frequency for each beam particle.    A dispersion 

relation is obtained for a special  case of sharp boundary density profiles. 

The stability properties of infinitely long beams are illustrated in detail 

for different geometries and various beam parameters.    The results agree with 

those obtained by Uhm in a special   case where a solid electron beam propagates 

through an annular electron beam.    The finite geometry effect of the 

accelerator is discussed briefly.    It might have a substantial   influence on 

the behavior of a real  device. 



I.      Introduction 

There has been some resurgence of interest in the production of high- 

energy particle beams, especially ion beams, by the collective-acceleration 

process in the last few years.    The collective particle accelerators, in 

principle, are designed to generate high-power particle beams by means of 

energy transfer from a negative-energy wave train grown on the intense annular 

relativistic electron beam.    Generally, the electron beam propagates along a 

guided magnetic field inside an evacuated conducting drift tube [l]-[3].    The 

phase velocity of these travelling waves can be controlled by manipulating the 

beam parameters so that the particles to be accelerated can be trapped by the 

waves.    As the wave energy increases, the trapped particles will  be dragged 

and gain energy from the waves.    However, there exist in practice some 

difficulties which stir numerous theoretical  and experimental  investigations. 

Naturally, the stability of this multi-beam system becomes one of the 

important subjects and big concerns in the acceleration process.    The 

collective particle accelerator at NRL has suggested that a density modulated 

intense relativistic electron beam propagating in a spatially modulated 

magnetic field can drag particles and accelerate them to high energies.    To 

make the problem tractable we simplify it by neglecting the beam modulation 

and rippled magnetic field and concentrate on_the stability analysis of a two- 

beam system. The diocotron instability of a hollow coaxial  multi-ring electron 

beam has been studied previously [4]-[6] using the fluid-Maxwell model   for a 

broad range of beam parameters and different geometries.    The same technique 

for stability analysis has been extended in this paper to investigate the most 

serious transverse oscillation for the general  case of two different particle 

beams propagating along an external  magnetic field.    Nevertheless, the 

previously assumed infinitely long wavelength perturbation  (k = 0)  has been 



removed. Furthermore, two beams are allowed not only to carry different 

charge and current, but also to travel in any direction with different speed 

along the tube. 

A macroscopic cold fluid-Maxwell  theory is used to perform the linear 

stability analysis of these infinitely long intense relativistic particle 

beams.    Equilibrium properties of the beams along with the basic theory and 

assumptions are examined in Section II.    In the linear regime, a set of 

eigenvalue equations for the perturbed field is derived in the rigid-rotor and 

cold laminar flow limit.    In a special  case where the density profile has 

sharp boundary, the magnetic field is strong and the particle beams are 

tenuous, a dispersion relation is derived in Section III and served as a tool 

to investigate the instability for a broad range of system parameters of 

experimental   interest.    In Section  IV, the dispersion relation is solved 

numerically for various beam parameters.    The stability properties are 

illustrated in great detail with particular emphasis on the beam current, beam 

location, beam charge and the velocities of the beam particles.    Finally, we 

conclude the results of the instability which is based on the assumption of 

infinite long beams in Section V, with a brief discussion including the effect 

of finite geometry of the accelerator. 



II. Basic theory and equilibrium state 

The mechanism of a collective accelerator can accelerate ions as well as 

electrons. For the purpose of generality, let us consider the equilibrium 

configuration as illustrated in Figure 1. It consists of two cylindrically 

symmetric intense relativistic annular particle beams which propagate parallel 

to a uniform applied axial magnetic field BQ in vacuum through a smooth 

perfectly conducting drift tube of radius Rc. The cylindrical polar 

coordinates (r, 9, z) are used with the z-axis along the axis of symmetry. 

Two particle beams are located separately in between Rx < r < R2 and 

R3 < r < R4 respectively, and are characterized by their charge q^, mass m^ , 

axial velocity Vzi s ^.c and density profile nr Where i = 1 and 2 represent 

the inner and outer beam respectively, c is the speed of light in vacuum. 

Normally, we allow partial neutralization by a small fraction of charges of 

opposite sign trapped in the beam. The influence of ion background on the 

stability of a relativistic electron beam has been discussed in great detail 

[11]. For simplicity, we assume that the partial neutralization is small and 

can be neglected here. As to the beams under investigation, the flow of 

particles can be considered laminar provided that 

1 = I = _i  « 1 __ 
Y " IA 17000 0Y 

where Budker's parameter v is the number of electrons per classical electron- 

radius length of the beam, y  is the relativistic factor of the beam particle, 

I is the beam current and IA is the Alfven-Lawson limiting current [7]. The 

beam particles motion is taken to be paraxial {v\  » P* + ?\)  where Pi denotes 



the three components of the particle momentum in the i direction 

respectively.    The axial  velocity is very large compared to the transverse 

velocity and is considered to be a constant. 

Analysis of dynamic properties is based on a macroscopic cold fluid 

model.    The beams in equilibrium are assumed to be azimuthally 

symmetric (4g-= °)» infinitely long and uniform axially (j^= °) •    Tne 

equations of particle conservation and momentum conservation can be expressed 

in the relativistic form as 

^i+v • (n. V.) =0 (1) 

and 

&+ y1 * v) *i mi Vi = *l (E + h X B) (2) 

where i = 1 or 2 denote the type of particles in the inner or outer beam 

respectively, q and m are the charge and rest mass of the 

particle, n(x,t) and V(x,t) are the density and mean velocity of the particle 

and E(x,t) and B(x,t) are the electric and magnetic fields respectively. The 

system with unknown variables such as n, V, E, B can be closed by including 
/s* />^ ts* />* 

the Maxwell's equations.    The self-induced radial   space-charge electric field 

and azimuthal magnetic field are calculated from Poisson's equation and 

Ampere's law which are shown below respectively 

V •  E = eg1 q.  n. (3) 



3E 
VxB = Vi Vzi ni K + yo £o IT <4> 

where yQ and eQ are permeability and permittivity of free space. 

In the steady-state (jr = 0)  the beam quantities are assumed axially and 

azimuthally symmetric (■£■=• = 0 and ■?— = 0).    Let us consider the following zero 
aZ do 

order equilibrium quantities 

V = (0, VQ, vz) 

E = (Epf 0, 0) 

B = (0, Be, B0) 

From Eqs.  (3)  and (4), the fields inside the beams have the following form 

\ n]   (r
2 - R2)/(2e0r) R]   < r < K^" 

Er(r)  - { (5) 
[q^dlj - R2)  + q2 n2 (r2 - R2)]/(2eQr)     R3 < r <  R4 

p0nlqlVzl(r2 " Rl2)/2r R1   <  r < R2 

B9(r)  = { (6) 

p0CqlnlVzl(R2 " Rl}  + q2n2Vz2  {p2 " Kl)V2r R3 <  r <  R4 



In the zero order approximation, the balance between forces due to 

electric and magnetic field gives  rise to the slow rotational  equilibrium of 

the fluid element.    One can readily obtain from Eq.  (?) that there is only a 

radial  component which supports the angular velocity w. (r) of the particle 

fluid element in slow rigid rotational  equilibrium. 

V>  - T- -  (VZB9 - Er)/rB„ (7) 

where <*>  > > w. has been assumed and <u = qB^/ym is the angular cyclotron 

frequency. The radial dependence of BQ and E has already been expressed in 

Eqs. (5) and (6). Note that the mean azimuthal motion of the beam particles 

is a function of r. Because of the angular rotation shear of the beam, the 

surface waves propagate relative to one another. Under suitable conditions, 

the interaction can become synchronized so as to produce a single 

exponentially growing transverse oscillation. Of course, the growth rate will 

be affected strongly by the beam parameters such as beam charge q, beam 

density n and beam velocity V . . . etc. 



III.    Stability analysis 

We are seeking for the first-order perturbed quantities 

6$ such as 6n, <5V, SE and <SB which are assumed to vary with e, z and t 

according to 

6»(x,t) = 6«(r) exp [j(ut - kz - ze)] 

where the oscillating angular frequency u> is assumed to be complex with 

Im ü) < 0, k is the propagation wave number in the z direction and £ is the 

azimuthal harmonic number. Accordingly, we will use the following linear 

operators to linearize the set of Eqs. (1) thru (4) 

fT~ju>,f?~-Jk,|r~-Je. 

After some algebraic manipulation we obtain the following result for perturbed 

density 

ei(»   -  Vz1   6Az)   % 3n 

öni " rB0 (a. - £a>b - kVzi)    3r • 

where (j)  and A are the scalar and vector potentials of the electromagnetic 

field with E = - v<|)  and B = V x A.    The sign of the charge, +1 is given 

by e..      With the help of the constants Vzl and Vz2, the perturbed 

fields &j)  and 5A    can be linearly combined to form the following two coupling 

eigenvalue equations 

(7TF r!r-4)  6*1 = " £0l [Vnl(1   " *?>  + q2 5n2{1 " ßl02>] (9) 



-13   3   *  \ ,,  .  --1 <7 fr r h ' V> 5*2 = " eö Cql 6nl {1 " ^2]  + q26n2(1 " *P        (10) 

where 6*-, s &|> - V j <5AZ and 6ip2 = ty> - Vz2 6AZ. Several assumptions have 

been made in deriving Eqs. (8), (9) and (10). Firstly, a tenuous particle 

beam with strong guiding magnetic field B0 have been considered so 

that w > > a), or uc > > u b where to b and a>c are the beam particle plasma 

frequency and cyclotron frequency, respectively. Secondly the diocotron 

instability investigated here is characterized by a low frequency 

perturbation. Therefore, we consider only wavelengths long and frequencies 

low compared to quantities that characterize the beam radius Rb, i.e., 

|kRb| < < 1 and |wRb| < < ic 

For the special case of a square constant density profile for each beam 

as illustrated in Figure 2, the contribution to the right-hand side of Eq. (8) 

becomes two delta functions at the sharp boundaries for each beam. The right- 

hand side of the eigenvalue Eqs. (9) and (10), are equal to zero except at the 

surface of the beam. Therefore the piece-wise solutions for the homogeneous 

Eqs. (9) and (10) can be expressed as 



«♦„(r) = a.rÄ + b. r"£ 

6^.2(r) - c.r* + ^ r"* 

6^.(r) =   6*i3(r) = e. r*+ ^ r"£ 

«1>14(r) = g1 r£ + h. r~Ä 

5^i5(r) = i. r* + j1 r"* 

0 < r < R-| 

R] < r < R2 

R? < r < R3 

R3 < r < R4 

R4 < r < Rc 

(ID 

where the solutions with 1 = 1 or 2 are corresponding to Eqs. (9) or (10) 

respectively. The coefficients a{, t^... are functions of Rj, R2 ... Rc to be 

determined by the boundary conditions, the requirement imposed by delta 

functions. In other words the eigenfunction is continuous at each boundary 

and vanishes both at r = 0 and r = Rc. In addition, the contribution from 

four delta functions can be obtained by integrating the eigenvalue equation 

across the discontinuities. Following the same procedure as one does in [41, 

we obtain totally 20 relationships which are listed below for reference. 

First we obtain from Eq. (1) the following 10 conditions 

ö*n (0) - 0 

«*n (R^ = «+12 (R]) 

21 e}   5i|»11(R1) 
«1»   (R^ - «0^ (RT) " N (X - Y0) R1 

«*12 (R2) = «*13 (R2) 

2%  ex 5*12 (R2) 
6*13 (fV " 6*12 (R2} = " N (X - Yj) R2 

(12) 

Wu  (R3) = 6*14 (R3) 

10 



21 Sif>13  (R3)   X2 

6*14 <ty  "a*13  (R3}  = -    (X - Y2)  R3 

«*14  (R4)   = fi*i5  ("V 

2£  6*u  (R4)   X2 

«♦15(R4)   -^14(V  =      (x - Y3)  R4 
(12) 

«*1S  (Rc)  = 0 

Similary, we obtain from Eq.  (10)  the following 10 relationships 

5% (0) = 0 

5<P21 (R^  = 5^22 {R}) 

6+22 (R1}  ' **21  (R1}  =      N (X - Y0)  Rx 

6*22 (R2)  - a*23 (R2> 

6*23  (R2} 6*22 (R2} 

1% ex  6^22  (R2)   Xj_ 

N (X -  Yx)  R2 
(13) 

6*23  (R3J   = 6*24  (R3} 

6*24  (R3}  * 6*23  (R3} 

2A  5t23(R3) 

(X - Y2)  R3 

6^24  (R4)   =  S*25  (R4) 

11 



« + 0C     (R/l)     -   «*9A    (RJ 

2£   6i|»24  (R4) 

'25  ^V   "°v24  VV   " (X - Y3)   R4 

(13) 

6*25  {Rc>  = ° 

where the prime denotes differentiation with respect to r and the following 

abbreviations have been used: 

D 

kVzl Y    = —— 
0      *D 

h'ltf"'*!1  (R2-Rl>/   <NR2> 

z2      _    „   v    i02      D2\ 
Y2-iS^-el4Xl(R2-RI)  /   tNRj) 

Y3 = _ii . £l Ä Xl (R* - RJ) /  (NR|)  + * (Rj - R3) / R4 

WD2 

Dl 

Xl = Yl  (1 " 3102) 

X2 = Y2  (1 " ßie2) 

UD = MD2 

2 2 
The diocotron frequencies üJDI-  are defined by ü>Di  = u bl- /  2Y1 wci where i  = 1 

for inner beam and i = 2 for outer beam.    Therefore we have the dispersion 

12 



relation given by 20 equations with 20 unknowns.    For a solution to exist, the 

determinant of the homogeneous linear set of equations must be equal to 

zero.    In practice, a straight forward algebraic manipulation leads us to the 

following important relationships. 

d2 = d,  xx 

f2 . fl Xl (14) 

e2 = te1 Rf + f}  (1 - X^g)] / Rf X2 

Under the circumstance of 31 = 32, we can obtain easily that d2 = d^ f2 = fj 

and e2 = ex.    The two eigenvalues, Eqs. (9)  and (10), become essentially 

identical.    It goes back exactly to the case of coaxial multi-ring electron 

beam we have studied before [4].    For the general  case, Eqs. (12) and (13) 

have to be solved simultaneously.    After some elementary but tedious algebra, 

we obtain finally the following dispersion relation which is a quartic 

polynomial  equation 

X4 + clX
3 + c2x

2 + c3x + c4 = 0 (15) 

13 



IV. Numerical results 

The dispersion relation (15) is solved numerically to determine the 

growth rate and oscillating frequency of the instability as a function of 

wavenumber k in terms of various beam parameters and geometries. We are 

primarily interested in the perturbations with lower azimuthal mode 

numbers A, especially the mode with A = 1 which corresponds to a sideways 

displacement of the whole beam. This is the most dangerous kink mode 

perturbation which causes the asymmetry of the beam and triggles the break up 

of the beam. In principle, the same mechanism that accelerates electrons can 

also accelerate ions. Therefore it is more appropriate to include both 

situations in the following stability analysis. 

First, we will consider the electron accelerator. In this case both beam 

particles are singly charged electrons. It can be described more specifically 

in the following cases 

(a) q: = q2= - e, ß1 = \^\  e2, 32 = - |*2| ez. 

Two electron beams propagate in the opposite axial direction with 

velocities 8, and 9>2  respectively.  It turns out to be the most unstable 

configuration in the system when both beams have the same energy, 

i.e., |ß,| = |e2|. The growth rate and real frequency of the instability are 

shown in Figure 3 versus wavenumber for the modes with A =1 and 2.  In order 

to illustrate the effect of geometry and density of two beams on instability, 

three different beam locations are chosen with two different values of n1/n2, 

the number density ratio of inner beam r^ to outer beam n2. For convenience, 

we fix the location of the outer annular electron beam between radius r3 =  .85 

14 



R and R* = .95 Rc and place the inner electron beam with the same thickness 

(R2 - RX = R4 - R3) at three different locations. First, when rx = R3 the inner 

beam coincides with the outer beam, the growth rate 

for I =  2 is larger than l  = 1 and both have the magnitude of several times 

of <ün = ü>n?, the diocotron frequency of the outer electron beam. As r^ 

decreases half-way (rj = R3/2) the growth rates for %  = 1 and 2 decreases and 

become comparable to each other. Finally, when r^ = 0, i.e., the inner beam 

becomes essentially a solid beam, the growth rates decrease further 

with l  = 1 mode dominates the instability which agrees with those obtained by 

Uhm [8]. Note that in these calculations the inner beam with the same 

thickness and density numbers at three different locations carry three 

different amounts of current. Another important feature of Figure 3 is that 

the growth rates increase as the ratio of nj/n2 increases. More specifically, 

the growth rate varies directly proportional to /hTTfTJT If there is a 

requirement for the inner beam to carry the same current at three different 

locations as indicated in Figure 3, the growth rate in three cases are all 

comparable. It is concluded that the counter two-stream electron beams is the 

most unstable set up and therefore has to be avoided in the accelerator 

experiment. Otherwise, the inner beam has not only to carry less current but 

also to be as thin as possible and keep distance from the outer beam. Because 

the fluid element of each beam rotates around the axis in the opposite 

direction, the self-induced fields therefore oppose to each other and have the 

tendency to break the equilibrium configuration easily. As far as the wave 

mode competition, it seems that the kink mode (l = 1) is more unstable when 

there is an inner solid beam. Finally and most importantly, in Figure 3 the 

real frequency w for the oscillation is nearly a constant versus wavenumber k. 
K 

15 



So that the group velocity is very small compared to c, i.e., 0 < Vg < c. It 

is a critical criteria while considering the finite geometry effect which will 

be discussed later. 

(b) q, = q2 = - e, ^  = S2- 

In this case the two electron beams may actually come from the same 

source in the laboratory. The diocotron instability of the coaxial multi-ring 

hollow electron beam has been studied extensively before [4]. For the purpose 

of comparison, we do the similar calculations as those in Figure 3 except 

that 3, -   |ßJ e . The results are shown in Figure 4 with a few 

distinctions. As we can see immediately, the I = 1 mode is stable all the 

time as indicated in the previous paper [4]. The growth rates for l  = 2 are 

relatively small and no longer a function of wavenumber. However, in contrast 

with those in Figure 3 the group velocity can be very large. It seems that 

the group velocity can be very large whenever the growth rate is small and 

vise versa. Generally speaking, the growth rate dereases when the gap between 

two beams increases. For the same beam geometry, the increase of nx/n2 will 

enhance the growth rate. 

(c) q = q„ = - e, - ^ < ^   <  e2- 

In most of the collective particle accelerators, the beam particles, 

whether they are propagating at the same direction or opposite to each other, 

do not have to travel at the same speed. In light of this, we add another 

figure here to demonstrate the evolution of growth rates due to the change 

of e. from, -|ß2| ez to |ß2| ez. Namely, we do the same exercises as those in 

16 



Figure 3 or Figure 4 except that ^ = 0. The results are shown in Figure 5 

which gives an intermediate picture between Figure 3 and Figure 4. As one can 

see clearly that the growth rates in most cases are moderate even for ß1 = 0. 

In other words, the electron plasma have an important effect on the diocotron 

instability of a hollow electron beam [9], [10]. At this stage, it is 

apparent that the counter two electron beams will suffer the most as far as 

the transverse oscillation is concerned. Finally, in most collective electron 

accelerators, the inner beam is solid, i.e. Rl = 0. We demonstrate in Figure 6 

as a final example the growth rate "of the instability for a solid electron 

beam with various velocities propagating through an annular electron beam. 

As 3-r change gradually from - |ß2| to |&2|, the growth rates for l  = 1 and 2 

modes decrease. There is no doubt that it is more stable to have two electron 

beams propagate in the same direction. 

Next, as we turn our attention to the collective ion accelerator, we 

consider the case where q1 = + e, q2 = - e and Rj_ = 0, i.e., the inner beam 

particle is a solid beam and carries singly charged ion. In collective ion 

accelerators, a high-power relativistic electron beam is used to accelerate a 

beam of positive ions to high energy. This process is achieved through the 

use of the collective fields of the primary electron beam. The effect of ion 

background on diocotron instability of an annular electron beam has been 

studied in connection with autoaccelerator [11]. Nevertheless, we have 

extended here the perturbation to the axial direction with finite wavenumber k. 

Recall that in our theory of perturbation, the condition of odpbi < < ü>ci was used 

in deriving Eqs. (8), (9) and (10), where oi , and a>c are the plasma and 

cyclotron frequency of the beam particle species electron or ion. Because of 

the large mass of the ion comparing to the electron (e.g., mi = 1840 me), it 

17 



might be difficult to find the experimental condition with beam parameters 

satisfying the requirement of u M < < u>ci. If the 

condition u)pb. < < 03c. fails or even »pM ~ ^ , the theory of perturbation 

derived in Section III is no longer valid. The additional terms have to be 

kept in the dispersion relation (e.g., Eq. (2.6.20) of [12] or Eq. (6) of 

[13]). The theory of perturbation for this particular beam parameter is 

currently under investigation. However, as long as the requirement 

of u  < < u . is fulfilled then the formalism is still valid. We choose a 
pbi    ci 

few examples to demonstrate the results. 

In Figure 7 the growth rates have been shown versus wavenumber 

for 3 = - .1, 0 and .1 respectively. When Y2 ■ 10 and r^/rig = .01, the 

growth rates are relatively small and become almost a constant for larger 

|k|. The magnitude of &x  is so small that the effect of ion speed on 

instability is virtually unseen. This is what we should expect from the 

conventional diocotron instability under the influence of the ion 

background. If we reduce Y2 from 10 to 4 and change ^ from -.2 to .2 instead 

of from -.1 to .1. The growth rates decreases and become almost independent 

of wavenumber k as illustrated in Figure 8. Note that in Figures 7 and 8, 

the A = 1 is always unstable as predicted in [11] due to the influence of the 

background ions. In the particle simulation for a long pulse accelerator, the 

ions created from the wall will travel towards the center of the tube. 

Because of the formation of the virtual anode near the center, the ions do not 

go through or move very close to the center of the tube. Instead they are 

reflected and travel back towards the wall. It is likely that we can have two 

sets of ion distribution, e.g., one from r = 0 to .8 Rc, and the other from 

18 



r = .2 Rc to Rc.    The growth rates versus wavenumber are shown in Figure 9 for 

three different values of n^ng.    The increase of the ion number density 

clearly will  enhance the instability which has been observed before [11]. 

19 



V.   Discussions 

The stability analysis for the case of infinitely long coaxial multiple 

beams has been studied using the fluid-Maxwell model. The stability property 

has been illustrated in great detail for a variety of experimentally 

interesting circumstances. In summary, for the electron-electron transverse 

oscillation it is more unstable when the two electron beams move in the 

opposite direction. Because the most dangerous kink mode can be destabilized 

with growth rate a few times of the diocotron frequency. It is similar to the 

resonant counter two-stream instability. On the other hand, if the beams 

travel in the same direction, the kink mode becomes stable and the growth rate 

for %  = 2 mode is only a few tenths of diocotron frequency. It is essentially 

a conventional diocotron instability. As to the ion-electron transverse 

oscillation, two beam particles can not interact each other closely in the 

parameter regime where the plasma frequency is much smaller than the cyclotron 

frequency for both ions and electrons. Therefore, the resonant two-stream 

instability is not observed. In the light of the collective particle 

accelerator, supressing the transverse oscillation or reducing the growth rate 

to a tolerable level is a necessary requirement for a successful 

accelerator. Although some of the features in the real device such as the 

beam density modulation and spatial variation of the magnetic field have been 

left out in the calculations. As a reminder, we want to mention that the 

growth rates calculated in Section IV have been normalized to the diocotron 

frequency »Q of the outer annular beam. From the definition of the diocotron 

frequency o>D which is a function of static magnetic field B0 and relativistic 

scaling factor y.    The growth rate can be easily reduced by either increasing 

20 



the kinetic energy of the annular beam or increasing the applied magnetic 

field. Other methods of reducing the growth rate can also be found by 

adjusting the beam geometry and parameters. 

In the real device of the collective particle accelerator, most 

importantly the effect of finite geometry on the transverse oscillation, has 

to be taken into account. For any convective instability, knowing the growth 

rate is not quite enough, we have to know the group velocity to show how fast 

the waves propagate. As to the collective electron accelerator, it has been 

concluded that the growth rate can be very large because of the counter two- 

stream instability. However, if one looks carefully from Figure 3 and Figure 5, 

the real frequency of oscillation is almost a constant while varying the wave 

number k. Therefore, the group velocity Vg is very small compared to the beam 

velocity V, i.e., 0 < V < < V ~ c. One finds from the wave kinetic equation 

that the peak of the wave is very far away from reaching the beam head. In 

this sense, one can almost be certain that the instability does not prevent 

acceleration of the beam head in the experiment. Another idea of chopping the 

electron beam will undoubtly prevent the instability from continuing to grow 

and follow the beam head. 

In the collective ion accelerator, the numerical result has indicated 

that the group velocity is very large compared to the slow ion beam velocity 

V, i.e., V > V. This means that the transverse oscillation has the maximum 

at the head of the beam. Fortunately, the growth rates for the ion-electron 

transverse oscillations are relatively small. Furthermore, the yrowth rate 

can De reduced very much by simply reducing the radius of the ion beam. 
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FIGURE CAPTIONS 

Figure 1        Longitudinal and cross section of equilibrium configuration 

and coordinate system. 

Figure 2       Beam particle density for two-beam geometry. 

Figure 3       Growth rate — and real frequency —- of the electron- 

electron transverse oscillation 

kc 
(4 = 1 and 2) VS wavenumber -— for various 

ni D 

R and j± when R3 = .85 Rc, R4 = .95 Rc> R4 - R3 = R2 - h» 

3, = - 32 and y = 4. 

Figure 4       Similar to Figure 3, except S-j = ß2* 

Figure 5        Similar to Figure 3 except Y1 = 1 and Y2 = 4. 

U). 

Figure 6 Growth rate — of the electron-electron transverse 
u kc 

oscillation {l = 1 and 2) VS wavenumber — for various 

0X when Y2= 4, R!   :  R2 : R3  : R4 = 0  :   .2 :   .857  :   .939 and 

"1 = n2* 

Figure 7 Growth  rate — and real   frequency (wR - kV^/oip of the 

electron-ion transverse oscillation  (£ = 1 and 2)  VS 
nl 

wavenumber — for various 3-,  when y„ = 10, — =  .01 and Rx 

:  Ro  :  R-5  :  R/i = 0  :   .8  :   .837   :   .939. 

Figure 8       Similar to Figure 7 except for various 31 and Y2 = 4, 
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Figure 9       The affect of ion background on the diocotron instability 

of an annular electron beam. 
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